f08 — Least-squares and Eigenvalue Problems (LAPACK) fO8ksc

NAG C Library Function Document
nag zgebrd (f08ksc)

1 Purpose

nag_zgebrd (f08ksc) reduces a complex m by n matrix to bidiagonal form.

2 Specification

void nag_zgebrd (Nag_OrderType order, Integer m, Integer n, Complex al[],
Integer pda, double d[], double e[], Complex tauq[], Complex taup(],
NagError *fail)

3 Description

nag_zgebrd (f08ksc) reduces a complex m by n matrix A to real bidiagonal form B by a unitary
transformation: A = QBPH, where @) and P are unitary matrices of order m and n respectively.

If m > n, the reduction is given by:

a=o()P =i,
where B; is a real n by n upper bidiagonal matrix and (), consists of the first n columns of Q.
If m < n, the reduction is given by

A=Q(B; 0)P"=QBPY,

where B; is a real m by m lower bidiagonal matrix and Pfl consists of the first m rows of P

The unitary matrices @ and P are not formed explicitly but are represented as products of elementary
reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with @ and P in
this representation (see Section).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: m — Integer Input
On entry: m, the number of rows of the matrix A.

Constraint: m > 0.

[NP3645/7] f08ksc. 1

fO8ksc NAG C Library Manual

3: n — Integer Input
On entry: n, the number of columns of the matrix A.

Constraint: n > 0.

4: a[dim| — Complex Input/Output
Note: the dimension, dim, of the array a must be at least max(1l,pda x n) when
order = Nag_ColMajor and at least max(1, pda x m) when order = Nag RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: the m by n matrix A.

On exit: if m > n, the diagonal and first super-diagonal are overwritten by the upper bidiagonal
matrix B, elements below the diagonal are overwritten by details of the unitary matrix) and
elements above the first super-diagonal are overwritten by details of the unitary matrix P.

If m < n, the diagonal and first sub-diagonal are overwritten by the lower bidiagonal matrix B,
elements below the first sub-diagonal are overwritten by details of the unitary matrix) and
elements above the diagonal are overwritten by details of the unitary matrix P.

5: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraints:

if order = Nag_ColMajor, pda > max(1, m);
if order = Nag RowMajor, pda > max(1,n).
6: d[dim] — double Output
Note: the dimension, dim, of the array d must be at least max(1, min(m, n)).

On exit: the diagonal elements of the bidiagonal matrix B.

7: e[dim] — double Output
Note: the dimension, dim, of the array e must be at least max(1, min(m,n) — 1).

On exit: the off-diagonal elements of the bidiagonal matrix B.

8: tauq[dim] — Complex Output
Note: the dimension, dim, of the array tauq must be at least max (1, min(m, n)).

On exit: further details of the unitary matrix Q.

9: taup[dim] — Complex Output
Note: the dimension, dim, of the array taup must be at least max (1, min(m, n)).

On exit: further details of the unitary matrix P.

10: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

f08ksc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) fO8ksc

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.
NE_INT 2

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed bidiagonal form B satisfies QBP = A + E, where
IEll, < c(n)ellAll,,
c(n) is a modestly increasing function of n, and e is the machine precision.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the singular values and vectors.

8 Further Comments
The total number of real floating-point operations is approximately 16n° (3m—n)/3 if m>n or
16m*(3n —m)/3 if m < n.

If m > n, it can be more efficient to first call nag_zgeqrf (f08asc) to perform a Q)R factorization of A, and
then to call nag_zgebrd (fO08ksc) to reduce the factor R to bidiagonal form. This requires approximately

8n*(m + n) floating-point operations.

If m <« n, it can be more efficient to first call nag_zgelqf (f08avc) to perform an L(Q) factorization of A,
and then to call nag zgebrd (f08ksc) to reduce the factor L to bidiagonal form. This requires

approximately 8m?(m + n) operations.
To form the unitary matrices P” and/or Q, this function may be followed by calls to nag_zungbr (f08ktc):
to form the m by m unitary matrix @)

nag_zungbr (order,Nag_FormQ,m,m,n,&a,pda,tauq,&fail)
but note that the second dimension of the array a must be at least m, which may be larger than was
required by nag_zgebrd (f08ksc);
to form the n by n unitary matrix P

nag_zungbr (order,Nag_FormP,n,n,m,&a,pda,taup,&fail)

but note that the first dimension of the array a, specified by the parameter pda, must be at least n, which
may be larger than was required by nag zgebrd (fO8ksc).

[NP3645/7] f08ksc.3

fO8ksc NAG C Library Manual

To apply @ or P to a complex rectangular matrix C, this function may be followed by a call to
nag_zunmbr (f08kuc).

The real analogue of this function is nag_zgebrd (f08ksc).

9 Example

To reduce the matrix A to bidiagonal form, where

0.96 —0.817 —0.03+0.96¢ —0.91+2.06: —0.05+0.4137
—098+198: —120+0.19¢ —0.66+0.42: —0.81 4 0.562
0.62 — 0.467 1.014+0.02¢ 0.63 -0.17c —1.11 4 0.60¢
—0.37 4 0.38¢ 0.19 —0.54¢ —0.98 —0.36¢ 0.22 —0.20¢
0.83 +0.51% 0.204+0.01¢ —0.17 —0.46¢ 1.47 4+ 1.59¢
1.08 — 0.28: 0.20 —0.12¢ —0.07 + 1.23¢ 0.26 + 0.26¢

A:

9.1 Program Text

/* nag_zgebrd (f08ksc) Example Program.
* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)
{
/* Scalars *x/
Integer i, j, m, n, pda, d_len, e_len, tauq_len, taup_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *taup=0, *taug=0;
double *d=0, #*e=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08ksc Example Program Results\n");

/* Skip heading in data file =*/
Vscanf ("$*[*\n] ");

Vscanf ("%$1d%1ds*["\n] ", &m, &n);
#ifdef NAG_COLUMN_MAJOR

pda = m;
#else

pda = n;
#endif

d_len = MIN(m,n);

e_len = MIN(m,n)-1;

taug_len = MIN(m,n);

taup_len = MIN(m,n);

/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, Complex)) ||
1 (d = NAG_ALLOC(d_len, double)) ||

f08ksc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

! (e = NAG_ALLOC(e_1len, double)) ||
! (taup = NAG_ALLOC(taup_len, Complex)) ||
! (taug = NAG_ALLOC(tauqg_len, Complex)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read A from data file x/
for (i = 1; i <= m; ++1)
{
for (3 = 1; j <= n; ++3)
Vscanf (" (%1f , %1f)", &A(i,j).re, &A(i,J).im);
}
Vscanf ("s*x["\n] ");

/* Reduce A to bidiagonal form =*/
f08ksc(order, m, n, a, pda, d, e, tauq, taup, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08ksc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print bidiagonal form *x/
Vprintf ("\nDiagonal\n") ;
for (i = 1; i <= MIN(m,n); ++i)
Vprintf ("%9.4f%s", d[i-1], 1i%8==0 2"\n":" ");
if (m >= n)
Vprintf ("\nSuper-diagonal\n") ;
else
Vprintf ("\nSub-diagonal\n") ;
for (i = 1; 1 <= MIN(m,n) - 1; ++1)
Vprintf ("%9.4f%s", e[i-1], 1%8==0 2"\n":" ");
Vprintf ("\n") ;

END:
if (a) NAG_FREE(a);
if (d) NAG_FREE (4d);
if (e) NAG_FREE(e);
if (taup) NAG_FREE(taup);
if (tauqg) NAG_FREE (tauq) ;

return exit_status;

9.2 Program Data

f08ksc Example Program Data

fO8ksc

6 4 :Values of M and N
(0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
(0.62,-0.46) (1.01, 0.02) (0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) (0.19,-0.54) (-0.98,-0.36) (0.22,-0.20)
(0.83, 0.51) (0.20, 0.01) (-0.17,-0.46) (1.47, 1.59)
(1.08,-0.28) (0.20,-0.12) (-0.07, 1.23) (0.26, 0.26) :End of matrix A
9.3 Program Results
f08ksc Example Program Results
Diagonal
-3.0870 2.0660 1.8731 2.0022
Super-diagonal
2.1126 1.2628 -1.6126
[NP3645/7] fO8ksc.5 (last)

	f08ksc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	m
	n
	a
	pda
	d
	e
	tauq
	taup
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

